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Abstract. We write down explicit expressions for the high-temperature expansion of several 
spin and gauge models with logarithmic action, defined on certain lattices Such lattices 
exist in any dimension for spin models, but in the gauge case their existence is only proved 
modulo a technical assumption. The partition function of the spin models is a gas of 
closed loops, weighted by N L ,  where N is the number of spin components and L is the 
total length of the loops. The gauge model is a gas of closed, self-avoiding surfaces, 
weighted by NX, where N is the dimension of the representation and ,y is the Euler 
characteristic. 

1. Introduction 

According to the universality hypothesis, universal quantities, such as critical exponents 
and certain combinations of critical amplitudes, should only depend on the overall 
properties of a model and not on details, such as the kind of d-dimensional lattice the 
model is defined on, inclusion of next-nearest-neighbour interactions, cubic anisotropy, 
whether a gauge model is defined by single-plaquette actions or not, etc. Loosely 
speaking, only the dimensionality of the lattice and the symmetries of the action are 
relevant. This hypothesis has never been rigorously proven, but it is part of the standard 
lore of the renormalisation group. Assuming universality, we have considerable free- 
dom in choosing a representative for a universality class. A natural strategy is to 
choose a model that in some sense is the simplest. Domany et a1 (1981) (henceforth 
referred to as DMNS)  were the first to choose models with logarithmic action, because 
although the action is complicated, the partition function is polynomial rather than 
exponential. This model was studied on a honeycomb lattice, where each site is 
connected to only three others. In other words, the coordination number (CN)  of this 
lattice is three. In that case, a particularly simple expression was given for the general 
term in the high-temperature (or strong coupling) expansion ( HTE).  

In a previous paper, this construction was generalised to pure lattice gauge theory 
in three dimensions (Larsson 1987). Unfortunately, the orthogonality relations were 
stated incorrectly due to a misconception. Because of this, the technical difficulties 
became insurmountable, and no formal expression U la D M N S  was given. This error, 
and the correct derivation of the partition function, was pointed out by A Maritan. 
The motivation for this paper is partly to correct our previous work, but also to extend 
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it in several directions. First, we have found a simple way to construct lattices with 
C N  = 3 in any dimension d, thus showing that there is an O( N )  model in any d which 
is exactly equivalent to a gas of self-avoiding (SA)  loops. Modulo a technical assump- 
tion, this construction can be generalised to lattices where at most three elementary 
( p i  1)-cells meet at each p-cell, for arbitrary p and d. Hence we can also show that 
there is a lattice gauge model whose HTE consists of closed SA surfaces. Moreover, 
the same strategy can also be applied to models where the fluctuating variables live 
on p-cells and  interact around ( p +  1)-cells, at least if the gauge group is Abelian. The 
case of external sources is also discussed. 

2. Explicit construction of lattices with low coordination number 

We define the coordination number ( C N )  of a lattice to be the maximum number of 
links emanating from any node. A square lattice has C N = ~  and a &dimensional 
hypercubic lattice has ~ ~ = 2 d .  There are several well known examples of two- 
dimensional lattices with C N  = 3, e.g. the honeycomb and brick lattices, which in fact 
are isomorphic. Obviously, only one-dimensional lattices can have a C N  less than 
three, so all interesting models will be defined on lattices with C N  2 3. 

The construction that we will generalise is the 4-8 lattice, depicted in figure 1. It 
can be considered to descend from a square lattice, where each node has been replaced 
by a diamond as in figure 2 .  In three dimensions, the analogous lattices are constructed 
from a cubic lattice, which evidently has C N  = 6. Each node is now replaced by an  
octahedron (double pyramid), which lowers the C N  to 5. In order to further lower the 
CN,  we delete some of the links of the octahedron. This must be done in a way which 
does not lower the effective dimensionality, e.g. by splitting the lattice into infinitely 
many disconnected two-dimensional lattices. The step from figure 3( b )  to figure 3(c) 
is an admissible reduction. It is easy to see that one can reach any of the links 1 to 6 

Figure 1. The 4-8 lattice 
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Figure 2. Construction of the 4-8 lattice from the square lattice. 

In) l b i  
Figure 3. Replacing a node by a structure with C N  = 3 

l c i  

from all others, by following the remaining links in the octahedron. Thus, for an  
external observer who is not interested in the details of the node, the connectivity of 
the lattice has not changed. In  fact, we can remove one more link without splitting 
the lattice, e.g. the one between nodes 1 and 6 in figure 3(c) .  However, this operation 
does not lower the C N  further, since all nodes except two (1 and  6 in this case) are 
still connected to three other nodes, and it is the maximal connectivity that determines 
the C N .  

This process can now be generalised to arbitrary high dimensions, which is most 
easily seen as follows. The node in figure 3 ( a )  is topologically equivalent to the 
diagram in figure 4 (a ) :  the incoming links, numbered from 1 to 6, are all connected 
to it. This node is expanded to the diagram in figure 4(b) ,  where all six nodes are 
connected to each of the others, except to the one directly opposite to it. Finally, the 
links inside the hexagon are deleted. Obviously, we can get from each link to any 
other, by following the sides of the hexagon. In d dimensions exactly the same 
argument applies, with the hexagon replaced by a 2d-gon. 

The lattice is potentially anisotropic, which could possibly change the universality 
class of a model defined on it. If each node in the cubic lattice is replaced by figure 
3(c),  the direction from the closer, lower left-hand corner (triangle 246) to the farther, 
upper right-hand corner (triangle 135) is singled out. However, this is in fact no 
problem, since one could single out other directions by rotating figure 3(c).  The 
rotations can be done locally at each node and  at random, without changing the model 
in any way, and  thus isotropy can be restored (see figure 4). 

In analogy with the C N ,  we define the second coordination number ( c N ? )  of a 
lattice to be the maximal number of plaquettes that are bordered by any link. For a 
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( 0 1  i b i  
Figure 4. A topologically equivalent representation of figure 3. 

hypercubic lattice in d dimensions, C N ?  = 2(d  - 1). It is obvious that C N ?  is at least 
three in three or more dimensions, while two-dimensional lattices have CN, = 2. The 
pth coordination number C N ~  can be defined analogously. A lattice, such that the 
maximal number of p-cells (elementary cells of dimension p )  which border any 
( p  - 1)-cell is k, has the property that CN, = k. 

A three-dimensional lattice with the property that C N ?  = 3 was constructed by 
Larsson (1987), as follows. The two-dimensional brick lattice, which is isomorphic to 
the honeycomb lattice, is extended in the third direction to make one layer of three- 
dimensional bricks. A second layer is placed on top  of the first one, but displaced as 
in figure 5 ,  to ensure that no lines are precisely on top  of each other. This procedure 
is then repeated with the layers alternatively parallel to layers one and  two. There is 
a plaquette wherever two bricks meet, and  a link wherever two plaquettes meet. This 
is the three-dimensional brick lattice, and  it obviously has C N ,  = 3. A four-dimensional 
brick lattice with C N ~  = 3 can analogously be constructed by stacking displaced layers 
of three-dimensional brick lattices, etc. A d-dimensional brick lattice has C N ~ - ,  = 3. 

The brick lattices solve the problem of finding a lattice with C N ~  = 3 when d = p + 1, 
but not when d > p +  1. However, the construction in the previous paragraph can in 
principle be generalised to find new lattices with this desired property. I n  three 
dimensions, we replace the plaquettes meeting at a link with figure 2, continued 
perpendicular to the plane of the paper, as in figure 6 .  A new problem is encountered 
here. Close to the corners, the new surfaces d o  not fit together. Hence, some ‘surgery’ 
has to be done to make them fit, but as one can easily verify in figure 6 ,  this does not 
cause any link to border more than three plaquettes, and C N ~  is still three. 
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Figure 6. Another three-dimensional lattice with C N ~  = 3. Special care is taken to ensure 
that the plaquettes fit nicely together at the corners. 

In four dimensions, we expect that links can be expanded in analogy with figure 
3, supplemented by an extra dimension perpendicular to the three shown. Due to the 
difficulties in visualising this lattice, we have not verified that ‘surgery’ can be performed 
to take care of the corners, but we do not expect this to be a serious problem. Modulo 
such ‘surgery’ problems, it is immediately clear how to extend our approach to construct 
lattices with CN,, for any p and d. 

3. Spin models on lattices with CN = 3  

Assume that a model can be put on a lattice in some natural way by choosing the 
action to be 

s = c s,, (3.1) 
( U )  

where the sum runs over all nearest-neighbour pairs (ij) of a standard lattice, such as 
a d-dimensional hypercubic one. We will refer to this as the standard form of the 
model. According to our general philosophy, we should be free to modify the action. 
In particular, we can choose it to be logarithmic 

S = 1 In( 1 + S, , )  (3.2) 
( U )  

where the sites now lie on a d-dimensional lattice with C N  = 3. The partition function 
is simply 

Z = Tr n [ 1 +SUI (3.3) 
( I f )  

where the Tr operation indicates a sum over all dynamical variables. Z is also a 
generating function for some class of graphs on the lattice, which constitute the HTE 
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of this model. Expanding the product, we get a sum of terms where each link ( i j )  
contributes either 1 or S,,,. In  the latter case, we draw a line between i and j ,  otherwise 
we leave the link empty. We now turn to some special cases. 

3.1. O(N) spin model 

Following DMNS, we take the link action to be 
S,, = Js, * S, = JsPsP (3.4) 

where s, = (s;) are N-dimensional unit vectors, and  the summation convention will 
be understood henceforth. Because 

( 3 . 5 ~ )  

all diagrams that contain a site with one or three emanating links contribute zero to 
the partition sum. If we choose the measure to be normalised to unity, 

T r 1 = 1 .  (3.5b) 

Tr s a  = Tr s a s P s Y  = 0 

We also have 
1 

N 
Tr s 0 s p  = - 8"'. (3.5c) 

Thus, the only diagrams that contribute will consist of closed loops. For each link we 
have a factor J /  N. Moreover, each loop will contribute 8"" = N. The partition function 
now becomes 

where the sum runs over all configurations G of closed loops, L( G) is the number of 
links and  C(G) is the number of loops (connected components). This is exactly the 
same formal expression as D M N S  arrived at, but it now applies to lattices in three or 
more dimensions. 

Because the action (3.2) is logarithmic, it has severe conceptual problems. For low 
enough temperatures ( J  > 1) there will be that states that have imaginary action, 
S,  < -1, which usually is considered to be meaningless. However, we will be optimists 
and  hope that useful information can be extracted in spite of this, by some sort of 
analytic continuation. This has certainly been the case in two dimensions, where this 
model was instrumental in the calculation of the critical exponents for the O( N)  model 
for general N (Nienhuis 1982, 1988). It should also be noted that the sum (3.6) is 
well formed. All states with imaginary action have vanished, and  all terms in the 
partition function are positive, for all positive values of J and N. 

3.2. Cubic model 

The cubic model in N dimensions is given by the action (3.4), but the spins are now 
constrained to lie on the coordinate axes. In Coxeter's (1963) notation, the spins lie 
on the corners of an  N-dimensional cross polytope, i.e. a square, octaeder, e tc .  . . 

where exactly one of the N components is non-zero. We see that the expressions for 
the products (3.5) are unaltered, and  thus it is clear that the partition function will 
still have the form (3.6). 

SI = (O,O, . . , , *l, . . . ,O) 
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3.3. U(N) spin models 

Instead of considering a spin model that is invariant under O( N )  rotations, we can 
build a theory where the basic variables are unit vectors whose components are complex. 
These models are invariant under U( N )  rotations. The link action is 

s,, = J ( s T  a s, + s, - s,*) 

where * denotes complex conjugation. Each link now acquires a direction, depending 
on whether we go to or from the conjugated spin. All combinations of one or three 
spins give zero when traced over, while ( 3 . 5 ~ )  is replaced by 

Tr s u s p  = Tr s * ~ s * ~  = 0. Tr s*UsP = '6 "p  
N 

Thus, only configurations of closed, directed loops will survive. The result is (3.6), 
with the modification that the sum now is taken over all directed loops. Summing 
over directions gives a factor 2c, because the directions of the C different loops are 
independent, and we see that the U( N )  model has the same partition function as the 
O(2N)  model has. Of course, this comes as no surprise, since the models are identical. 

3.4. General factorisable spin model 

More generally, consider a spin model governed by the action (3.4), but let now the 
spins take their values in an N-dimensional target manifold M. The trace operation is 

Tr A(s) = A(s)  d p ( s )  I 
where d p (  s )  is the measure on M. By a suitable choice of coordinates on M, one can 
make the trace satisfy 

T r 1 = 1  Tr sU = O  Tr s u s p  = h"6"P.  

This is achieved by rescaling the measure, putting the origin at the centre of mass, and 
choosing the coordinate system along the main axes of inertia. The triple product, 
Tr s ' s p s y ,  is generally different from zero, however. This shows that the HTE of all 
factorisable models can be chosen to consist of graphs without endpoints, whereas 
three-point vertices in general cannot be avoided. 

3.5. Blote- Nienhuis O(N) model 

Recently Blote and Nienhuis (1989) introduced a different variant of the O( N) model 
which also is equivalent to a loop gas. O( N) spins live on the links of a square lattice 
and interact around plaquettes in the following fashion: 

Z =Tr n [1+  u ( s ,  s, +s, - s k + s k  - s,+s,  * s,)+ u ( s ,  - s k + s ,  - s,) 
i l k /  

+ w [ ( s r *  S , ) ( S k '  s,)+(s,. S /O(S , '  s,)11 (3 .7)  
where ijkl label the four edges of a plaquette clockwise. Upon expansion Z becomes 
a sum over closed SA loops: 
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1 U V 

Figure 7. Boltzmann weights of the nine vertices that occur in the Blote-Nienhuis model 
(3 .6) .  

where L, is the number of vertices of type x; see figure 7 .  In particular, when 
= = w 1 / 2  - - J, (3.8) has the same form as (3.6), with L = L, + L, + 2 L , , ,  but the set 

of graphs are different. By combining numerical methods with a mapping of this model 
onto a solvable nineteen-vertex model, Blote and Nienhuis identified the universality 
classes of the critical regions. Here we note that (3.7) can easily be generalised to 
higher dimensions in such a way that the partition function can still be transformed 
into a loop gas. For example, in three dimensions, one puts the spins on plaquettes 
and lets them interact around elementary cubes. For simplicity we limit ourselves to 
a model where the analogues of w = 0, so at most one loop can pass through each 
elementary cube. 2 is then 

2 = T r  fl [1+ u(s ,  s, + 11 more)+ u ( s ,  s l + 2  more)]. 
yklmn 

This construction thus also yields an exact equivalence between O ( N )  spin models 
and loop gases in any dimension, but as far as we can see this cannot be extended to 
gauge models. 

4. Plaquette models on lattices with C N ~  = 3  

The construction in the previous section can be generalised to lattice models where 
the basic objects live on links and interact around plaquettes (Larsson 1987). The 
most important class of this type of model is lattice gauge theory, which has been 
reviewed by Kogut (1979,1983) and Drouffe and Zuber (1983). 

We assume that the standard form of the action is given on a d-dimensional 
hypercubic lattice by 

s = c s p  
P 

(4.1) 

where the sum runs over all plaquettes P, In complete analogy with what we did for 
spin models, we define the logarithmic version of this model on a d-dimensional lattice 
with C N ~  = 3 by 

2 = Tr fl [1+ Sp]  
P 

(4.2) 



High-temperature expansion of spin and gauge models 1819 

where the trace Tr now runs over all configurations of link variables. Evidently, (4.2) 
reduces to the standard action of lattice gauge theory as S, -0. Moreover, (4.2) is 
invariant under all transformations that leave each S ,  invariant, so if (4.1) has a gauge 
symmetry, so does (4.2), and it is appropriate to consider (4.2) as a gauge theory on 
the lattice. 

4.1. O(N) gauge model 

The fluctuating variables of this model are orthogonal matrices that belong to the 
fundamental, N-dimensional representation O( N )  and live on the links. We take the 
plaquette action to be 

(4.3) 

where the product runs over all links b that surround the plaquette P, and tr is the 
trace in the given representation. Note that tr is different from the ensemble trace Tr. 
Because C N ?  = 3, only products of at most three matrices enter in the HTE. The relations 
analogous to (3.5) are 

T r 1 = 1  ( 4 . 4 ~ )  

Tr 0"' = 0 (4.4b) 

s p  = % tr n O h  = % oif of: . . . 0;; 
h i i i f  

1 
N 

Tr O"'OY6 =- a " Y a f i 6  (4.4c) 

Tr O"pOysOFF = 0. (4.4d) 
Equation ( 4 . 4 ~ )  is the orthogonality relation for the group, and (4.4d) follows because 
O ( N )  has a Z2 centre. Because of (4.4b, d ) ,  only graphs where all links border zero 
or two occupied plaquettes will contribute to the partition function. These graphs 
form closed SA surfaces. To calculate the fugacity of each such surface, we note that 
each link contributes a factor N- '  by ( 4 . 4 ~ ) .  At each site, we have an  independent 
sum over indices, so every site contributes a factor 6"* = N. Finally, each plaquette 
gives % = (%/ N) N by (4.3). Taken together, we find that the partition function can 
be written as a sum over closed surfaces G, orientable or not: 

(4.5) 

where P ( G )  is the number of plaquettes (alias the area) and x ( G )  is the Euler 
characteristic of the surface: 

x ( G )  = (#sites)-(# links)+(# plaquettes). 
The Euler characteristic is a topological invariant, which is independent of the particular 
triangulation of the surface. For closed orientable surfaces, it is given by 

It should be noted that the O ( N )  gauge model does not describe a single SA surface 
in the N - 0 limit, contrary to the O( N )  spin model which describes a single SA walk 
(a linear polymer in a good solvent). The reason for this well known phenomenon is 
very easy to see from (4.5). When N -0 with % / N  fixed, we can always make a term 
in (4.5) larger by adding another closed surface with ,y < 0. Thus, this limit does not 
describe a single closed surface, but rather a dense gas of surfaces with many handles 
(Maritan and Omero 1982). 

x( G) = 2 x (#  connected components)-2 x (#  handles). 
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4.2. U(N)  gauge model 

The local action (4.3) is changed to 
r 1 

where the link variables belong to U(N). Each link now has a direction, and the 
sum over directions is implemented by the complex conjugate term. Only graphs where 
every link is either traversed once in each direction or not at all have a non-zero weight, 
because 

1 
N 

Tr U"PUYa =- a " Y 6 P 6  

where flmP is the complex conjugate of U@. In other words, the (a, P)th component 
of the Hermitian conjugate matrix U is UP". The trace over every other combination, 
such as 

U"PUY6 UaP U Y ~  uw u"PuYsu'v 

is zero because of the U( 1) centre of U( N ) .  Thus, the graph expansion gives formally 
the same result (4.5), but the sum now runs over all oriented closed surfaces. On a 
lattice where all closed surfaces are orientable, such as every three-dimensional lattice, 
the sum over orientations can be performed and the partition function be expressed 
as a sum over all unoriented surfaces. Since each connected component can be oriented 
independently, this means that we get a factor of two for each. Consequently, (4.5) 
is changed to 

4.3. General gauge model 

The fundamental representations O( N )  and U( N )  constitute the most simple real and 
complex irreps of gauge groups, respectively. For a general real irrep R of a gauge 
group G ,  we write the action as (4.3), but we now interpret tr as the trace in the 
appropriate representation. With suitable normalisation, the relations (4.4~2, b, c)  are 
automatically satisfied with N being the dimension of the irrep, and it only remains 
to check (4.4d). In group theoretical language (Slansky 1981), this amounts to saying 
that R O R O R  does not contain the singlet or, which is the same thing because of 
orthogonality between irreps, that R O R  does not contain R itself. If R O R  - 
1 + R +. . . , on the other hand, the partition function will contain terms where three 
plaquettes meet, and hence it will no longer be a sum over proper surfaces. 

For a complex representation R, we write the action as (4.6). Orthogonality and 
normalisation gives 

T r 1 = 1  ( 4 . 8 ~ )  

Tr U"@ = O  (4.8b) 

( 4 . 8 ~ )  
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(4.9) 

for all combinations of p and q such that 0 < p + q 3, except p = q = 1. If this is true, 
which, for example, happens if the group has a U( 1)  or ZN centre, N 3 4, the partition 
function is given by (4.5), where the sum runs over all oriented surfaces and N is the 
dimension of the representation. Group theoretically, (4.9) implies both that R 0 R 
does not contain R*,  and that R* is not equivalent to R. In the first case, the graphs 
in the HTE contain singular lines where three surfaces meet. In the second case, there 
will be contributions from graphs where two differently oriented plaquettes are next 
to each other. Such irreps are known as pseudoreal. For SU(N),  N z 4 ,  (4.9) holds 
because of Z N  invariance. In SU(3), 3 0 3 - 3 * + .  . . . More explicitly, two triple 
products are non-zero, namely 

Tr u"PuY"u'* = T r  u " P U Y 6 U I ' V  = d E a Y F E p a 9 .  

The fundamental irrep of SU(2) is pseudoreal (2 - 2*), and hence adjacent plaquettes 
do not need to have the same orientation. Explicitly 

T~ ~ " P u Y ~  = T,. D a P U Y R  = & " Y ~ P &  

but all triple products vanish. Thus, the HTE is a sum over closed SA surfaces, orientable 
or not, but the weights are complicated. 

Among the fundamental representations f of the other groups, SO( N )  is real and 
satisfies (4.9), except SO(3) for which 3 0 3  contains 3*. Sp(2N) is pseudoreal but the 
product o f f O f 0 f d o e s  not contain 1, so the partition function is a sum over unoriented 
graphs with some weights. All exceptional groups except E, have f0f0f- 1 +. , . , 
so the graphs contain singular lines. However, our analysis gives that the 56 of E, has 
the same partition function as the fundamental irrep of S0(56), which is quite a 
non-trivial result. 

There is no problem to consider other irreps than the fundamental one. However, 
if the dynamical variables are chosen to lie in the adjoint representation, the graph 
expansion always contains singular lines, because the product of an irrep with itself 
always contains the adjoint. If one works out the Clebsch-Gordan coefficients for the 
RO R 0 R, one could still be able to show interesting equivalences between models, 
but we will not attempt this here. 

4.4. Discrete gauge groups 

Just as O ( N )  spin models can be approximated by cubic models, we can choose a 
discrete gauge group on the lattice. As we showed above, the crucial condition is that 
(4.9) vanishes, which is guaranteed if the group has a Z2 subgroup. For example, the 
O( N )  gauge model has the same HTE as the discrete subgroup which rotates the cross 
polytope of subsection 3.2 into itself. This group consists of 2 N  reflections and N !  
relabellings of the coordinate axes (Coxeter 1963). With every group element we can 
associate a Z2 charge, which is + 1  if there is an even number of reflections, and -1 
otherwise. This is the sought Z2 subgroup that ensures that all triple products vanish. 
It is possible that our observation can lead to more efficient simulation techniques for 
pure lattice gauge theories, since a discrete group generally is easier to handle numeri- 
cally than a continuous one. However, it is not clear that the introduction of matter 
will preserve this equivalence. 
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4.5. O ( N )  plaquette model 

Following Maritan and Stella (1987), we can take the fluctuating variables to be 
O( N)-symmetric spins SE that live on the links and interact with the following action: 

N N 

(4.10) 

where each plaquette P is bounded by k links. This action is clearly somewhat peculiar 
because the vector index a occurs more than twice when it is summed over. Hence 
the model does not have a natural tensor structure. It is nevertheless interesting because 
it will allow us to recover the problem of a single SA random surface in the N + 0 limit. 

In the HTE, each occupied plaquette contributes a factor sf :  to its surrounding links. 
The variables, being O ( N )  spins, fulfil the relations (3.5), and hence only closed 
surfaces survive. The factor N- '  from each link is cancelled by the Nk" in the 
definition of the coupling constant. A plaquette can be considered to be in state a, 
and from ( 3 . 5 ~ )  we see that all adjacent plaquettes will be in the same state. For each 
connected component of the surface, we get an additional sum over a,  which gives a 
factor N. The partition function thus becomes 

(4.11) 

It is clear that if the spins are restricted to lie on the coordinate axes, we get a cubic 
model which has exactly the same HTE as the O ( N )  plaquette model, for the same 
reason as in subsection 3.1. 

5. Source fields 

So far, we have only dealt with spin models in zero magnetic fields and pure gauge 
models without sources. These models give rise to a HTE that consists of closed 
manifolds only. When we introduce source (magnetic) fields, this is no longer the case. 

Let us first return to the O( N )  spin model of subsection 3.1. The simplest way to 
introduce a magnetic field H = ( H " )  is to note that if the standard form of the action 
is a sum over links ( i j )  and sites k, S=I; S,, + Z  Sk, the partition function can be 
approximated for small S. 

Z=Trexp(I ;  Sk)=Trexp(I ;S,)exp(I ;  ~ , ) - T r I - I ( 1 + S f , ) ~ ( l + s k ) .  

Thus, we replace the partition function (3.3) by 

z = Tr n [ 1 + .fSi ' S j ]  n [ 1 + H ' S k ]  
( v )  k 

defined on a d-dimensional lattice with C N  = 3. Expanding out (5.1) in graphs, we get 
an occupied link for each time we choose the second term in the first product, and an 
occupied site each time we choose the second term in the second product. Clearly, 
every occupied site contributes a factor H. s = H"s". There are now two different 
ways to obtain an even number of spins at a site to sum over, and thus to get a non-zero 
contribution to the partition function. Either we have zero or two occupied links 
leading into an unoccupied site, as before, or we have one or three occupied links 
leading into an occupied site. We have studied this problem on a general lattice in 
(Larsson 1985), and we have arrived at a complicated formal expression. This 
expression can easily be evaluated for any given graph, but it does not give much insight. 
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The problematic graphs are those containing three links meeting at a site, because 
they cause the loop to branch and thereby cease to be a manifold. We will evaluate 
the model (5.1) in the approximation that branch points are ignored. Such an approxi- 
mation is in fact exact for the Blote-Nienhuis models considered in section 3.5. Having 
disposed of three-link vertices, the only new contribution will come from sites where 
one link meets an occupied site: 

(5.2) 

The partition function consists of SA graphs containing closed and open strings. The 
closed ones give the same factor as before. An open string has two end-points, each 
giving a factor H/ N, and links giving a factor J /  N. The Kronecker deltas along the 
string will single out the same component of H at both end-points, and summation 
over components will give H 2  = H H .  Since each open string has two end-points, the 
partition function is 

(5.3) 

where B ( G )  is the number of end-points and H =m. 
The gauge models can also be analysed in the approximation that three-plaquette 

interactions are absent, but here we do  not have an example where this is exact. 
Nevertheless, we define the partition function on a lattice with C N ~  = 2 as 

Z =Tr n [ l  + p  tr no] fl [l  + t r  JO,] (5.4) 
P h 

and the N x N matrix J U P  is defined on each link. The new possibility compared with 
(4.3) is that we have an occupied plaquette next to an occupied link. This yields the 
factor 

1 J Yf i  

N N ( 5 . 5 )  Tr J"PO*POYfi = J " P  - 6 " Y a P f i  = - 

for each link on the boundary. Since the normal contribution from a link is 1/ N, the 
surplus weight is J Y 8 .  It is clear that the occupied links must form unbroken curves 
that are boundaries of the surfaces, which now are open. The sites along the loop can 
no longer be traced over independently, which can be accounted for by multiplying 
each site on the boundary by N - ' .  Hence, each boundary carries the extra weight 

(5.6) 
where L is the length (the number of sites) of the boundary. The partition function 
is thus a sum over open and closed surfaces, 

N - L J - P J P Y .  . .  j a e  = N - L  tr  J L  

where the product runs over all boundaries B, LE( G )  is the length of B and L( G )  = 
Z B  LB. It should be noted that the Euler index is different for surfaces with holes. 

,y( G )  = 2 ( #  connected components)-2(# handles)-(# holes). 

It should be clear how to generalise this construction to the other kinds of plaquette 
models defined in section 4. 
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6. pcell gauge theories 

The question now arises if it is possible to construct models whose HTE is given by SA 

manifolds of dimension 3 3 .  The answer is affirmative and the construction is straight- 
forward when the dynamic variables take values in some Abelian group. Simply put 
spins on the p-cells of a lattice with CN, = 3 and define the action as the product of 
spins around each ( p  + 1)-cell. For example, consider a model where Ising spins live 
on plaquettes on a lattice with C N )  = 3 and interact around elementary volumes V, with 
partition function 

2 = Tr n [ 1 + Jsp,sh . . . s,, ] 
V 

where all pi E 8 V and k is the number of plaquettes bordering V. 
as a sum over graphs consisting of closed unoriented 3-manifolds 

z = c  J"'"' 
G 

(6.1) 

We can express Z 

(6.2) 

where V ( G )  is the number of elementary volumes building up G. If the Ising spins 
in (6.1) are replaced by U ( l )  spins and a complex conjugate term is added to the 
action, the sum (6.2) instead runs over oriented 3-manifolds. 

The situation is more complicated for non-Abelian quantities because there is no 
natural way to define a product of ordinary matrices around a p-cell, p 3 3. We have 
recently introduced a new class of models, p-cell lattice gauge models (Larsson 1990), 
which in principle can be used to build higher-dimensional manifolds in the HTE. The 
usual gauge models correspond to p = 1 whereas the p = 0 models are ordinary spin 
models. We have not been able to evaluate the weight of each graph in the HTE and 
therefore we only sketch the case p = 2 briefly. 

Consider a hypercubic lattice where a four-index quantity U;f(x, i j )  lives on each 
plaquette with base point x and direction i j .  The indices correspond to the four edges 
of the plaquette and they can 'hook' to the U s  on each of the four neighbours. On 
the same plaquette with opposite orientation lives an inverse of U, defined by the 
following conditions: 

U ; f (  U-'):: = U::( U-');!  = U $ (  U-'):! = U:!( U- ' ) ; :  = s:sp,. (6.3) 

The standard action for the 2-cell gauge model is S = J Exilk S,,.,,, where xijk denotes 
an elementary cube with base point x in the ijk direction. The piece of the action 
associated with a cube in the 123-direction is 

J [ U;f(x, 1 2 ) U g ( x ,  13)UF:(x, 23)( U-')zhy(x+3, 12) 
a... 7 

x ( U - ' ) 3 x + 2 ,  13)( U - ' ) " , ( x +  1,23)+cc] .  (6.4) 

Note that each U shares an index with each of its four neighbours. Introducing the 
transpose of U, 

( U');,p = U:; (6.5)  

we can define orthogonal and unitary four-index quantities and the corresponding 
restrictions of the model (6.4). 
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Let us introduce a more streamlined notation by considering U as an element in 
G@G, where G is a matrix group: U = SO T. The inverse is defined by U-' = S - ' 0  
T- ' ,  the transpose by U ' =  S'O T',  and the condition (6.3) reads 

(sor)(s- '@ r-I) = (s-lo T- ' ) ( s@r)  =(so T')(s-'o( T - ' )  
=((s ')- 'o r- ')(s '@ r )  = zoz. 

This is important because an invariant measure is inherited from the measure on G; 
let us denote it by Tr: 

T r 1 = 1  

Tr U O U-'  = Tr U - ' @  U = N-21@Z@Z@Z 

Tr U = Tr U 0  U @  U = 0 
(6.6) 

where N is the dimension of the representation of G. The factor N - 2  in the last 
equation is fixed by the conditions UU-' = I @  Z, tr Z@I = N 2 .  

It is now clear that if the hypercubic lattice had C N ~ = ~ ,  the log version of this 
model would give rise to a HTE consisting of closed SA 3-manifolds. However, this is 
not the case, and some modifications have to be made to adapt this model to lattices 
with CN* = 3, because not every plaquette is square on such lattices. There is only one 
possibility: let the number of indices depend on the shape of the plaquette such that 
there is always one index for each side. If a plaquette is bordered by an even number 
of sides, 2 K  say, the corresponding variable takes values in GsK, where diagonally 
opposite links belong to the same G factor. A natural definition of the inverse, transpose 
and invariant measure is inherited from G. The latter satisfies 

Tr U @  U- '  = N-K[s2K.  

In principle it is now clear how to evaluate the weight of each graph in the HTE of 
these models, but in practice this task appears to be very difficult. On lattices where 
there are plaquettes with an odd number of boundary links, we cannot appeal to a 
tensor product structure and the situation becomes problematic even in principle. 

7. Conclusion and further remarks 

We have found that the HTE of many models with logarithmic action is equivalent to 
a gas of closed SA manifolds. This is of course not the first time the connection between 
statistical mechanics models and random manifolds is made; on the contrary, many 
of our references make this observation. The new point is that it suffices to consider 
proper manifolds without intersections to find models in the right universality class, 
assuming, of course, that the log models on our rather pathological lattices have the 
same universal behaviour as the corresponding standard model. 

There have been problems to simulate random surfaces on computers. It is energeti- 
cally favourable for the surface to develop 'fingers', i.e. very narrow tubes, and hence 
the surface degenerates to essentially a branched polymer, or lattice animal (David 
1986). To our knowledge most simulations have been carried out on connected surfaces, 
and it is possible that the existence of other connected components stabilises the 
surface. Smaller components inside a large one may prevent the latter from collapsing, 
since the SA constraint makes the manifolds 'hard'. Anyway, some of the random 
surface models constructed in this paper should definitely not be in the lattice animal 
universality class, since the corresponding gauge models are not. It should also be 
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mentioned that there are other methods to make random surfaces better behaved, e.g. 
introduction of an extrinsic curvature term in the action (Polyakov 1986, Ambjprrn et 
a1 1987). 

Karowsky and Thun (1985) have carried out simulations on a SA random surface 
model with a Euler characteristic term in the action, i.e. essentially the model governed 
by the action (4.5). They found that the critical point is characterised by vanishing 
mean curvature, (x) = 0. They further refined their model by distinguishing between 
surfaces with the same ,y but a different number of connected components. However, 
because this quantity cannot be expressed as the integral of a local density, the refined 
model cannot correspond to a gauge model. 

We also wish to make an observation which may be relevant to the classification 
of three-dimensional critical phenomena. In two dimensions, the most important 
characteristic of a second-order phase transition is its associated conformal anomaly 
number, c (Cardy 1988). At least at the level of critical exponents, the O ( N )  model 
(with - 2 s  N G 2 )  corresponds to all real values of c between -2 and + l .  Most of 
these models are not unitary. At the same time, the O ( N )  model is equivalent to a 
gas of loops, which are the only non-trivial closed manifolds that can be embedded 
in two dimensions, and c is related to the fugacity of these loops. Taking the models 
of sections 3 and 4 seriously, a natural generalisation to three dimensions is that critical 
phenomena be characterised by two parameters: the fugacities for loops and surfaces, 
corresponding to two qualitatively distinct classes of models: spin and gauge. 

Acknowledgment 

I am grateful to Bengt Nagel for reading an early version of the manuscript. 

References 

Ambjerrn L, Durhuus B, Frohlich J and Jonsson T 1987 Nucl. Phys. B 290 [FS20] 480 
Blote H W J and Nienhuis B 1989 J.  Phys. A: Math. Gen. 22 1415 
Cardy J L 1988 Phase Transitions and Critical Phenomena vol 11, ed C Domb and J L Lebowitz (New York: 

Coxeter H S M 1963 Regular Polytopes 3rd edn (New York: Dover) 
David F 1986 Europhys. Left. 2 577 
Domany E, Mukamel D, Nienhuis B and Schwimmer A 1981 Nucl. Phys. B 190 [FS3] 279 
Drouffe J-M and Zuber J-B 1983 Phys. Rep. 102 1 
Karowski M and Thun H J 1985 Phys. Reo. Lef t .  54 2556 
Kogut J B 1979 Rev. Mod. Phys. 51 659 
- 1983 Rev. Mod. Phys. 55 775 
Larsson T A 1985 Phys. Rev. B 26 154 
- 1987 J .  Phys. A: Math. Gen. 20 L535 
- 1990 Mod. Phys. Left .  A 5 255 
Maritan A R and Omero C 1982 Phys. Left. 109B 51 
Maritan A and  Stella A 1987 Nucl. Phys. B 280 [FS18] 561 
Migdal A A 1984 Phys. Rep. 102 199 
Nienhuis B 1982 Phys. Rev. Left. 49 1062 
Nienhuis B 1988 Phase Transitions and Critical Phenomena vol 11, ed C Domb and J L Lebowitz (New 

Polyakov A M 1986 Nucl. Phys. B 268 406 
Slansky R 1981 Phys. Rep. 79 1 

Academic) 

York: Academic) 


